
Ideal Downward Refinement in the EL
Description Logic

Jens Lehmann1 and Christoph Haase2

1 Universität Leipzig, Department of Computer Science,
Johannisgasse 26, D-04103 Leipzig, Germany,

lehmann@informatik.uni-leipzig.de
2 Oxford University Computing Laboratory,

Wolfson Building, Parks Rd, Oxford, OX1 3QD, United Kingdom,
christoph.haase@comlab.ox.ac.uk

Abstract. With the proliferation of the Semantic Web, there has been
a rapidly rising interest in description logics, which form the logical foun-
dation of the W3C standard ontology language OWL. While the num-
ber of OWL knowledge bases grows, there is an increasing demand for
tools assisting knowledge engineers in building up and maintaining their
structure. For this purpose, concept learning algorithms based on re-
finement operators have been investigated. In this paper, we provide an
ideal refinement operator for the description logic EL and show that it
is computationally feasible on large knowledge bases.

1 Introduction

The Semantic Web is steadily growing3 and contains knowledge from diverse
areas such as science, music, people, books, reviews, places, politics, products,
software, social networks, as well as upper and general ontologies. The underlying
technologies, sometimes called Semantic Technologies, are currently starting to
create substantial industrial impact in application scenarios on and off the web,
including knowledge management, expert systems, web services, e-commerce,
e-collaboration, etc. Since 2004, the Web Ontology Language OWL, which is
based on description logics (DLs), has been the W3C-recommended standard
for Semantic Web knowledge representation and is a key to the growth of the
Semantic Web.

However, recent progress in the field faces a lack of well-structured on-
tologies with large amounts of instance data due to the fact that engineering
such ontologies constitutes a considerable investment of resources. Nowadays,
knowledge bases often provide large amounts of instance data without sophis-
ticated schemata. Methods for automated schema acquisition and maintenance
are therefore being sought (see e.g. [5]). In particular, concept learning methods
have attracted interest, see e.g. [2,6,11,13].

3 As a rough size estimate, the semantic index Sindice (http://sindice.com/) lists more
than 10 billion entities from more than 100 million web pages.

Many concept learning methods borrow ideas from Inductive Logic Program-
ming including the use of refinement operators. Properties like ideality, complete-
ness, finiteness, properness, minimality, and non-redundancy are used as theo-
retical criteria for the suitability of such operators. It has been shown in [12] that
no ideal refinement operator for DLs such as ALC, SHOIN , and SROIQ can
exist (the two latter DLs are underlying OWL and OWL 2, respectively). In this
article, an important gap in the the analysis of refinement operator properties is
closed by showing that ideal refinement operators for the DL EL do exist, which
in turn will lead to an advance in DL concept learning.
EL is a light-weight DL, but despite its limited expressive power it has proven

to be of practical use in many real-world large-scale applications. For example,
the Systematized Nomenclature of Medicine Clinical Terms (Snomed CT) [4]
and the Gene Ontology [18] are based on EL. Since standard reasoning in
EL is polynomial, it is suitable for large ontologies. It should furthermore be
mentioned that EL++, an extension of EL, will become one of three profiles in
the upcoming standard ontology language OWL 2.

Overall, we make the following contributions in this paper: We

– close a gap in the research of properties of refinement operators in DLs,
– provide an ideal and practically useful refinement operator for EL, and
– show the computational feasibility of the operator.

This paper is structured as follows. Section 2 introduces the preliminaries for our
work, and the refinement operator is presented in Section 3. There, we prove its
ideality and describe how it can be optimised to work efficiently and incorporate
background knowledge. We evaluate the operator on real-world knowledge bases
in Section 4. Related work is described in Section 5 and conclusions are drawn
in Section 6.

2 Preliminaries

In this section, the definitions relevant for defining the refinement operator in
Section 3 are being introduced. Besides recalling known facts from the literature,
we introduce minimal EL trees that serve as the basis for the refinement operator.

2.1 The EL Description Logic

Before we begin to introduce the DL EL, we briefly recall some notions from
order theory. Let Q be a set and � a quasi order on Q, i.e., a reflexive and
transitive binary relation on Q. Then (Q,�) is called a quasi ordered space. The
quasi order � induces the equivalence relation ' and the strict quasi order ≺
on Q: q ' q′ iff q � q′ and q′ � q, and q ≺ q′ iff q � q′ and q 6' q′. For P ⊆ Q,
max(P) := {p ∈ P | there is no p′ ∈ P with p ≺ p′} defines the set of maximal
elements of P . We say (Q,�) has a greatest element iff there is a q∗ ∈ Q such
that max(Q) := {q∗}.

Concept constructor Syntax Semantics

Top > ∆I

Concept name A AI

Conjunction C uD CI ∩DI

Existential restriction ∃r.C {x ∈ ∆I | there is y ∈ CI with (x, y) ∈ rI}

Table 1. EL syntax and semantics.

Name Syntax Restriction on I
Concept inclusion A v B AI ⊆ BI

Role inclusion r v s rI ⊆ sI

Disjointness A uB ≡ ⊥ AI ∩BI = ∅
Domain domain(r) = A x ∈ AI for all (x, y) ∈ rI

Range range(r) = A y ∈ AI for all (x, y) ∈ rI

Table 2. Knowledge base axioms.

The expressions in the DL EL are concepts, which are built inductively start-
ing from sets of concepts names NC and role names NR of arbitrary but finite
cardinality, and then applying the concept constructors shown in Table 1. There
and in the following, A,B denote concept names, r, s denote role names, and C,D
denote arbitrary EL concepts. By C(EL) we refer to the set of all EL concepts.
The size of an EL concept C is denoted by |C| and is is just the number of symbols
used to write it down. When proving properties of EL concepts, the role depth of
a concept C is a useful induction argument. It is defined by structural induction
as rdepth(A) = rdepth(>) := 0, rdepth(C u D) := max(rdepth(C), rdepth(D))
and rdepth(∃r.C) := rdepth(C) + 1.

The semantics of an EL concept C is given in terms of an interpretation
I = (∆I , ·I), where ∆I is a set called the interpretation domain and ·I is the
interpretation function. The interpretation function maps each A ∈ NC to a
subset of ∆I , and each r ∈ NR to a binary relation on ∆I . It is then inductively
extended to arbitrary EL concepts as shown in Table 1.

In this paper, a knowledge base K is a finite union of knowledge base axioms
given in Table 2. An interpretation I is a model of a knowledge base K iff the
conditions on the right-hand side of Table 2 are fulfilled for every knowledge
base axiom in K. An EL concept C is satisfiable w.r.t. K iff there exists a model
I of K such that CI 6= ∅.

A standard reasoning task in DLs is subsumption. Given a knowledge base
K and EL concepts C,D, we say C is subsumed by D w.r.t. K (C vK D) iff
CI ⊆ DI for all models I of K. Intuitively, this states that the concept C is
a specialisation of the concept D w.r.t. K. In the remainder of this paper, we
always assume a knowledge base to be implicitly present, and we therefore just

write C v D. Obviously, (C(EL),v) forms a quasi ordered space, from which we
can accordingly derive the relations ≡ (equivalence) and @ (strict subsumption).

Example 1. From the following knowledge base K we can infer C v D.

NC = {Human, Animal, Bird, Cat}
NR = {has, has child, has pet}
K = {has pet v has, has child v has, Bird v Animal, Cat v Animal,

domain(has pet) = Animal}
C = Human u ∃has pet.> u ∃.has child.>
D = Human u ∃has.Animal

In practice, knowledge bases can be derived from arbitrary ontologies, which
may be formulated in DLs other than EL. Concept and role inclusion axioms
can be extracted by computing a classification of the respective ontology, and
the remaining axioms can be handled in a similar fashion.

For a role name r ∈ NR, we define the set of role names that are strictly
below r in the subsumption hierarchy as sh↓(r) := max{s | s @ r}. Given finite
sets of concept names A,B ⊆ NC , we write A v B iff for every B ∈ B there is
some A ∈ A such that A v B. We sometimes abuse notation and write A v B
instead of A v {B}. We call A ⊆ NC reduced if there does not exist B ⊆ NC
with |B| < |A| and A ≡ B.

2.2 Downward Refinement Operators

Refinement operators are used to structure a search process for concepts. Intu-
itively, downward refinement operators construct specialisations of hypotheses.
This idea is well-known in Inductive Logic Programming [15].

Let (Q,�) be a quasi ordered space and denote by P(Q) the powerset of
Q. A mapping ρ : Q → P(Q) is a downward refinement operator on (Q,�) iff
q′ ∈ ρ(q) implies q′ � q. In the remainder of this paper, we will call downward
refinement operators just refinement operators. We write q ρ q

′ for q′ ∈ ρ(q)
and drop the index ρ if the refinement operator is clear from the context. A
refinement chain of length n of a refinement operator ρ that starts in q1 and
ends in qn is a sequence q1 . . . qn such that qi qi+1 for 1 ≤ i < n. We
say that the chain goes through q iff q ∈ {q1, . . . , qn}. Moreover, q ∗ q′ iff there
exists a refinement chain of length n starting from q and ending in q′ for some
n ∈ N.

Refinement operators can be classified by means of their properties. Let
(Q,�) be a quasi ordered space with a greatest element, and let q, q′, q′′ ∈ Q. A
refinement operator ρ is finite iff ρ(q) is finite for any q. It is proper iff q q′

implies q 6≡ q′. We call ρ complete iff q′ ≺ q implies q ∗ q′′ for some q′′ ≡ q′.
Let q∗ be the greatest element in (Q,�), ρ is weakly complete iff for any q′ ≺ q∗,
q∗ ∗ q′′ with q′′ ≡ q′. We say ρ redundant iff q∗ ∗ q′ via two refinement
chains, where one goes through an element q′′ and the other one does not go
through q′′. Finally, ρ is ideal iff it is finite, proper and complete.

2.3 Minimal EL Concepts

An important observation is that EL concepts can be viewed as directed labeled
trees, see e.g. [1]. This allows for deciding subsumption between concepts in terms
of the existence of a simulation relation between the nodes of their correspond-
ing trees. Moreover, the graph approach to EL concepts allows for a canonical
representation of EL concepts as minimal EL trees. The latter generalise simi-
lar approaches found in the literature, namely “reduced EL concept terms” [10]
and “minimal XPath tree pattern queries” [16]. Most proofs are omitted in this
section and deferred to the full version of this paper, since they are mostly a
straight-forward generalisation of the proofs found in [10].

An EL graph is a directed labeled graph G = (V,E, `), where V is the finite
set of nodes, E ⊆ V ×NR×V is the set of edges, and ` : V → P(NC) is the labeling
function. We define V (G) := V , E(G) := E, `(G) := ` and |G| := |V |+ |E|. For
an edge (v, r, w) ∈ E, we call w an (r-)successor of v, and v an (r-)predecessor of
w. Given a node v ∈ V , a labelling function ` and L ⊆ NC , we define `[v 7→ L] as
`[v 7→ L](v) := L and `[v 7→ L](w) := `(w) for all w 6= v. Given G and v ∈ V (G),
we define G[v 7→ L] := (V (G), E(G), `(G)[v 7→ L]). We say v1

r1−→ · · · rn−→ vn+1

is a path of length n from v1 to vn+1 in G iff (vi, ri, vi+1) ∈ E for 1 ≤ i ≤ n. A
graph G contains a cycle iff there is a path v

r1−→ · · · rn−→ v in G.
An EL concept is represented by an EL concept tree, which is a connected

finite EL graph t that does not contain any cycle, has a distinguished node
called the root of t that has no predecessor, and every other node has exactly
one predecessor along exactly one edge. The set of EL concept trees is denoted
by T . In the following, we call an EL concept tree just a tree. Figure 1 illustrates
two examples of such trees. Given a tree t, we denote by root(t) its root. The
tree t corresponding to a concept C is defined by induction on n = rdepth(C).
For n = 0, t consists of a single node that is labelled with all concepts names
occurring in C. For n > 0, the root of t is labelled with all concept names
occurring on the top-level of C. Furthermore, for each existential restriction
∃r.D on the top-level of C, it has an r-labelled edge to the root of a subtree of t′

which corresponds to D. As an example, the tree t corresponding to A1 u ∃r.A2

is t = ({v1, v2}, {(v1, r, v2)}, `) where ` maps v1 to {A1} and v2 to {A2}. By t>
we denote the tree corresponding to >. Obviously, the transformation from a
concept to a tree can be performed in linear time w.r.t. the size of the concept.
Similarly, any tree has a corresponding concept4, and the transformation can be
performed in linear time, too.

Let t, t′ be trees, v ∈ V (t) and assume w.l.o.g. that V (t)∩ V (t′) = ∅. Denote
by t[v ← (r, t′)] the tree obtained from plugging t′ via an r-edge into the node v
of t, i.e. the tree (V (t)∪V (t′), E(t)∪E(t′)∪{(v, r, root(t′))}, `∪ `′), where `∪ `′
is the obvious join of the labeling functions of t and t′. By t(v) we denote the
subtree at v. Let C be a concept and t the tree corresponding to C. We define
depth(t) := rdepth(C), and for v ∈ V (t), level(v) := depth(t) − depth(t(v)).

4 Strictly speaking, t has a set of corresponding concepts, which are all equivalent up
to commutativity.

{A}

∅

∅

r

s

{A′}

∅ {B}

∅ ∅

r r′

t s

Fig. 1. A (non-maximal) simulation relation w.r.t. the knowledge base K = {A′ v
A, r′ v r} from the tree corresponding to A u ∃r.∃s.> to the tree corresponding to
A′ u ∃r.∃t.> u ∃r′.(B u ∃s.>).

Moreover, onlevel(t, n) is the set of nodes {v | level(v) = n} that appear on level
n.

Definition 1. Let t = (V,E, `), t′ = (V ′, E′, `′) be trees. A simulation relation
from t′ to t is a binary relation S ⊆ V × V ′ such that if (v, v′) ∈ S then the
following simulation conditions are fulfilled:

(SC1) `(v) v `′(v′)
(SC2) for every (v′, r, w′) ∈ E′ there is (v, r, w) ∈ E1 such that r v r′ and
(w,w′) ∈ S

We write t � t′ if there exists a simulation relation S from t′ to t such that
(root(t), root(t′)) ∈ S. It is easily checked that (T,�) forms a quasi ordered
space, and we derive the relations ' and ≺ accordingly. A simulation S from
t′ to t is maximal if for every simulation S ′ from t′ to t, S ′ ⊆ S. It is not
hard to check that S is unique. Using a dynamic programming approach, the
maximal simulation can be computed in O(|t| · |t′|). Figure 1 shows an example
of a simulation.

The following lemma is proven by induction on rdepth(D). It allows us to de-
cide subsumption between concepts C,D in terms of the existence of a simulation
between their corresponding trees t, t′, and moreover to interchange concepts and
their corresponding trees. For that reason, the EL refinement operator presented
in the next section will work on trees rather than concepts.

Lemma 1. Let C,D be concept with their corresponding trees t, t′. Then C v D
iff t � t′.

We can now introduce minimal EL trees which serve as a canonical repre-
sentation of equivalent EL concepts.

Definition 2. Let t = (V,E, `) be a tree. We call t label reduced if for all
v ∈ V , `(v) is reduced. Moreover, t contains redundant subtrees if there are
(v, r, w), (v, r′, w′) ∈ E with w 6= w′, r v r′ and t(w) � t(w′). We call t minimal
if t is label reduced and does not contain redundant subtrees.

It follows that the minimality of a tree t can be checked in O(|t|2) by computing
the maximal simulation from t to t and then checking for each v ∈ V (t) whether
v is label reduced and, using S, whether v is not the root of redundant subtrees.
The set of minimal EL trees is denoted by Tmin .

We close this section with a small lemma that will be helpful in the next
section.

Lemma 2. Let Tn be the set of minimal EL trees up to depth n ≥ 0, and let
t, t′ be EL trees with depth(t) < depth(t′). Then the following holds:

1. |Tn| is finite
2. t 6� t′

3 An Ideal EL Refinement Operator

In this section, we define an ideal refinement operator. In the first part, we are
more concerned with a description of the operator on an abstract level, which
allows us to prove its properties. The next part addresses optimisations of the
operator that improve its performance in practice.

3.1 Definition of the Operator

For simplicity, we subsequently assume the knowledge base to only contain con-
cept and role inclusion axioms. We will sketch in the next section how the re-
maining restriction axioms can be incorporated in the refinement operator.

The refinement operator ρ, to be defined below, is a function that maps a
tree t ∈ Tmin to a subset of Tmin . It can be divided into the three base operations
label extension, label refinement and edge refinement. Building up on that, the
complex operation attach subtree is defined. Each such operation takes a tree
t ∈ Tmin and a node v ∈ V (t) as input and returns a set of trees that are refined
at node v. Figure 2 provides an example.

The base operations are as follows: the operation e`(t, v) returns the set of
those minimal trees that are derived from t by extending the label of v. Likewise,
r`(t, v) is the set of minimal trees obtained from t by refining the label of v. Last,
re(t, v) is obtained from t by refining any of the outgoing edges at v. Formally,

– e`(t, v): t′ ∈ e`(t, v) iff t′ ∈ Tmin and t′ = t[v 7→ (`(v) ∪ {A})], where
A ∈ max{B ∈ NC | `(v) 6v B}

– r`(t, v): t ∈ r`(t, v) iff t′ ∈ Tmin and t′ = t[v 7→ (`(v) ∪ {A}) \ {B})], where
B ∈ `(v), A ∈ max{A′ ∈ NC | A′ @ B} and there is no B′ ∈ `(v) with
B 6= B′ and A @ B

– re(t, v): t′ ∈ re(t, v) iff t′ ∈ Tmin and t′ = (V,E′, `), where E′ = E \
{(v, r, w)} ∪ {(v, r′, w)} for some (v, r, w) ∈ E and r′ ∈ sh↓(r)

{A}

∅

∅

r

s

{A}

{B}

∅

r

s

{A}

{B}

∅

r′

s

{A′}

{B}

∅

r′

s

{A′}

{B} ∅

∅ ∅

r′ r

s t

Fig. 2. The tree on the left is refined stepwise to the tree on the right, where we assume
a knowledge base K = {A′ v A, r′ v r}. The operator performs four different kinds
of operations (from left to right): 1. label extension (B added), 2. edge refinement (r
replaced by r′), 3. label refinement (A replaced by A′), 4. attaching a subtree (∃r.∃t.>
added).

The crucial part of the refinement operator is the attach subtree operation,
which is defined by Algorithm 1. The set as(t, v) consists of minimal trees ob-
tained from t that have an extra subtree attached to v. It recursively calls the
refinement operator ρ and we therefore give its definition before we explain
as(t, v) in more detail.

Definition 3. The refinement operator ρ : Tmin → P(Tmin) is defined as:

ρ(t) :=
⋃

v∈V (t)

(e`(t, v) ∪ r`(t, v) ∪ re(t, v) ∪ as(t, v))

For t ∈ Tmin and v ∈ V , Algorithm 1 keeps a set of output trees T and a
set M of candidates which are tuples consisting of a minimal EL tree and a set
of role names. Within the first while loop, an element (t′,R) is removed from
M. The set R′ is initialized to contain the greatest elements of R, and R′′ is
initially empty and will later contain role names that need further inspection. In
the second while loop, the algorithm iterates over all role names r in R′. First,
the tree t′′ is constructed from t by attaching the subtree (v, r, w) to v, where w
is the root of t′. It is then checked whether t′′ is minimal. If this is the case, t′′

is a refinement of t and is added to T . Otherwise there are two reasons why t′′

is not minimal: Either the newly attached subtree is subsumed by some other
subtree of t, or the newly attached subtree subsumes some other subtree of t.
The latter case is checked in Line 11, and if it applies the algorithm skips the
loop. This prevents the algorithm from running into an infinite loop, since we
would not be able to refine t′ until t′′ becomes a minimal tree. Otherwise in the
former case, we proceed in two directions. First, sh↓(r) is added to R′, so it can
be checked in the next round of the second while loop whether t′ attached via

Algorithm 1 Computation of the set as(t, v)
1: T := ∅; M := {(t>, NR)};
2: whileM 6= ∅ do
3: choose and remove (t′,R) ∈M;
4: R′ := max(R); R′′ := ∅;
5: while R′ 6= ∅ do
6: choose and remove r ∈ R′;
7: t′′ := t[v ← (r, t′)]; w := root(t′);
8: if t′′ is minimal then
9: T := T ∪ {t′′};

10: else
11: for all (v, r′, w′) ∈ E(t′′) with w 6= w′ and r v r′ do
12: if t′′(w) � t′′(w′) then
13: nextwhile;
14: end if
15: end for
16: R′ := R′ ∪ (sh↓(r) ∩R); R′′ := R′′ ∪ {r};
17: end if
18: end while
19: M :=M∪ {(t∗,R′′) | t∗ ∈ ρ(t′),R′′ 6= ∅};
20: end while
21: return T ;

some r′ ∈ sh↓(r) ∩ R to v yields a refinement. Second, we add r to R′′, which
can be seen as “remembering” that r did not yield a refinement in connection
with t′. Finally, once R′ is empty, in Line 19 we add all tupels (t∗,R′′) to M,
where t∗ is obtained by recursively calling ρ on t′.

Example 2. Let K be the knowledge base from Example 1 and let K′ = K \
{domain(has pet) = Animal}. Figure 3.1 depicts the set of all trees in ρ(Humanu
∃has.Animal) w.r.t. K′.

Proposition 1. ρ is a is a finite, proper and weakly complete downward refine-
ment operator on (Tmin ,�).

Proof. In the following, let t ∈ Tmin and v ∈ V (t).
First, it is easily seen that ρ is a downward refinement operator. Every oper-

ation of ρ adds a label or a subtree to a node v, or replaces a label or edge-label
by a refined label or edge respectively. Hence, t′ � t for all t′ ∈ ρ(t).

Regarding finiteness of ρ, the first part of Lemma 2 guarantees that there is
only a finite number of minimal EL trees up to a fixed depth. It then follows
from the second part of Lemma 2 that for a given tree t, ρ(t) only consists of
trees of depth at most depth(t) + 1. Hence, ρ(t) is finite.

In order to prove properness of ρ, it is sufficient to show t 6� t′ for t′ ∈ ρ(t).
To the contrary, assume t � t′ and that t has been refined at v. Let S be a
simulation from t′ to t. Since v has been refined, it follows that (v, v) 6∈ S. We

{Human} {Human} {Human} {Human}

{Human} {Human} {Human}

{Human}{Human,Animal}

{Human}{Human}

has pet has hashas has

has has child has

has

has has

has

has childhas child

hashas pet has child

{Animal} {Bird} {Cat}{Human} {Animal}

{Animal} ∅
{Animal}

∅

∅
{Animal}

∅

{Animal,Human}{Animal}

∅ {Animal} {Animal}

Fig. 3. The set ρ(Human u ∃has.Animal) of minimal trees w.r.t. the knowledge base K′
from Example 2.

have that S is a simulation, so there must be some v′ ∈ V (t) with level(v′) =
level(v) such that (v′, v) ∈ S. This implies that there is a simulation S ′ on t′

with {(v′, v), (v, v)} ⊆ S ′. It follows that t′ contains a redundant subtree at the
predecessor of v, contradicting to the minimality of t′.

Regarding weakly completeness, let depth(t) ≤ n. We show that t is reachable
from t> by nested induction on n and m := |{(root(t), r, w) ∈ E(t)}|. For the
induction base case n = 0,m = 0, t is just a single node labeled with some
concept names. It is easily seen that by repeatedly applying e`(t, v) and r`(t, v)
to this node we eventually reach t. For the induction step, let n > 0,m > 0.
Hence, the root of t is has m successor nodes w1, . . . , wm attached along edges
r1, . . . , rm to t. By the induction hypothesis, the tree tm−1, which is obtained
from t by removing the subtree t(w1) from t, is reachable from t>. Also, there
is a refinement chain θ from t> to t(w1) such that an intermediate tree t′w1

occurs in θ and t′ = tm−1[root(t) ← (r′1, t
′
w1

)] ∈ as(tm−1, root(t)) for some r′1
with r1 v r′1. Hence, we can first reach t′ from t> and then, by applying the
remaining refinement steps from θ to t′ and refining r′1 to r1, eventually reach t.

Still, ρ is not ideal, since it is not complete. It is however easy to derive a complete
operator ρ∗ from ρ:

ρ∗(t) := max{t′ | t> ∗ρ t′, t′ ≺ t and
depth(t′) ≤ depth(t) + 1}.

This construction is needed, because we would for example not be able to reach
∃r.(A1 uA2) starting from ∃r.A1 u ∃r.A2 with ρ.

Theorem 1. The EL downward refinement operator ρ∗ is ideal.

Remark 1. In [12] it has been shown that for languages other than EL complete
and non-redundant refinement operators do not exist (under a mild assumption).
The same result carries over to our setting:

Proposition 2. Let ψ : Tmin → P(Tmin) be a complete refinement operator.
Then ψ is redundant.

Proof. We assume K = ∅ and NC contains A1 and A2. Since ψ is complete and its
refinements are minimal, we have > ∗ A1. Similarly, > ∗ A1, A1 ∗ A1uA2,
and A2 ∗ A1uA2. We have A1 6v A2 and A2 6v A1, which means that A1 6 ∗ A2

and A2 6 ∗ A1. Hence, A1 u A2 can be reached from > via a refinement chain
going through A1 and a different refinement chain not going through A1, i.e. ψ
is redundant.

3.2 Optimisations

We used two different kinds of optimisations: The first is concerned with the
performance of minimality tests and the second reduces the number of trees
returned by ρ by incorporating more background knowledge.

Recall from Section 2.3 that checking for minimality of a tree t involves
computing a maximal simulation S on V (t) and is in O(|t|2). In order to avoid
expensive re-computations of S after each refinement step, the data-structure
of t is extended such that sets C←1 (v), C→1 (v), C←2 (v) and C→2 (v) are attached
to every node v ∈ V (t). Here, the set C←1 (v) contains those nodes w such that
(SC1) holds for (v, w) according to Definition 1. Likewise, C→2 (v) is the set of
those nodes w such that (SC2) holds for (w, v), and C←1 (v) and C→2 (w) are
defined accordingly. When checking for minimality, it is moreover sufficient that
each such set is restricted to only consist of nodes from onlevel(v) excluding
v itself. This fragmentation of S allows us to perform local updates instead of
re-computation of S after an operation is performed on v. For example, when
the label of v is extended, we only need to recompute C←1 (v), update C→1 (w)
for every w ∈ C←1 (v), and then repeatedly update C→2 (v′) and C←2 (v′) for every
predecessor node v′ of an updated node until we reach the root of t. This method
saves a considerable amount of computation, since the number of nodes affected
by an operation is empirically relatively small.

In order to keep |ρ(t)| small, we use role domains and ranges as well as disjoint
concepts inferred from K. The domain restriction axioms can be used to reduce
the set of role names considered when adding a subtree or refining an edge: For
instance, let w be a node, (v, r, w) the edge pointing to w, and range(r) = A.
When adding an edge (w, s, u), we ensure that range(r)udomain(s) is satisfiable.
This ensures that only compatible roles are combined. Similar effects are achieved
by mode declarations in ILP tools. However, in OWL ontologies role domains and
ranges are usually already present and do not need to be added manually. Similar
optimisations can be applied to edge refinement. In as(t, v), we furthermore use
range restrictions to automatically label a new node with the corresponding role
range. For example, if the edge has label r and range(r) = A, then the new node
w is assigned label `(w) = {A} (instead of `(w) = ∅).

We now address towards the optimisation of extending node labels in the
implementation of the function e`. Let A be a concept name for which we want
to know whether or not we can add it to `(v). We first check A v `(v). If yes,

we discard A since we could reach an equivalent concept by refining a concept in
`(v), i.e. we perform redundancy reduction. Let (u, r, v) be the edge pointing to
v and range(r) = B. We verify that AuB is satisfiable and discard A otherwise.
Additionally as before, we test whether `(v) v A. If yes, then A is also discarded,
because adding it would not result in a proper refinement. Performing the last
step in a top down manner, i.e. start with the most general concepts A in the
class hierarchy, ensures that we compute the maximum of eligible concepts, which
can be added to `(v). In summary, we make sure that the tree we obtain is label
reduced, and perform an on-the-fly test for the satisfiability of its corresponding
concept. Applying similar ideas to the case of label refinement is straight forward.

In practice, the techniques briefly described in this section narrow the set of
trees returned in a refinement step significantly by ruling out concepts, which are
unsatisfiable w.r.t. K or which can also be reached via other refinement chains.
This is is illustrated by the following example.

Example 3. Let K be as in Example 1 and define K′ := K∪{domain(has pet) =
Animal, domain(has child) = Human, range(has child) = Human, Human u
Animal ≡ ⊥}. By incorporating the additional axioms, ρ(Human u ∃has.Animal)
only contains the trees on the right-hand side of the dashed line in Figure
2, except for Human u ∃has child.> u ∃has.Animal, which becomes Human u
∃has child.Human u ∃has.Animal due to the range of has child.

4 Evaluation of the Operator

In order to evaluate the operator, we computed random refinement chains of ρ.
A random refinement chain is obtained by applying ρ to >, choosing one of the
refinements uniformly at random, then applying ρ to this refinement, etc.

Name L
o
g
ic

a
l

a
x
io

m
s

C
la

ss
es

R
o
le

s

ρ
av

.
ti

m
e

(i
n

m
s)

ρ
p

er
re

f.
(i

n
m

s)

R
ea

so
n
in

g
ti

m
e

(%
)

R
efi

n
em

en
ts

(a
v
.

a
n
d

m
a
x
.)

R
ef

.
si

ze
(a

v
.

a
n
d

m
a
x
.)

Genes 42656 26225 4 167.2 0.14 68.4 1161.5 2317 5.0 8
CTON 33203 17033 43 76.2 0.08 5.1 220.2 28761 5.8 24
Galen 4940 2748 413 3.5 0.21 37.1 17.0 346 4.9 16
Process 2578 1537 102 193.6 0.16 27.2 986.5 23012 5.7 22
Transport 1157 445 89 164.4 0.09 5.9 985.2 22651 5.7 24
Earthrealm 931 559 81 407.4 0.17 23.2 1710.3 27163 5.7 19
Tambis 595 395 100 141.6 0.09 1.5 642.4 26685 5.8 23

Table 3. Benchmark results on ontologies from the TONES repository. The results
show that ρ works well even on large knowledge bases. The time needed to compute a
refinement is below one millisecond and does not show large variations.

In order to asses the performance of the operator, we tested it on real ontolo-
gies chosen from the TONES repository5, including some of the most complex
OWL ontologies. We generated 100 random refinement chains of length 8 and
measured the results. We found experimentally that this allows us to evaluate
the refinement operator on a diverse set of concept trees. The tests were run on
an Athlon XP 4200+ (dual core 2.2 GHz) with 4 GB RAM. As a reasoner we
used Pellet 1.5. The benchmarks do not include the time to load the ontology
into the reasoner and classify it.

The results are shown in Table 3. The first four columns contain the name
and relevant statistics of the ontology considered. The next column shows the
average time the operator needed on each input concept. In the following col-
umn this value is divided by the number of refinements of the input concept.
The subsequent column shows how much time is spend on reasoning during the
computation of refinements. The two last columns contain the number of refine-
ments obtained and their size. Here, we measure size as the number of nodes in
a concept tree plus the sum of the cardinality of all node labels.

The most interesting insight from Table 3 is that despite the different size
and complexity of the ontologies, the time needed to compute a refinement is low
and does not show large variations (between 0.09 and 0.21 ms). This indicates
that the operator scales well to large knowledge bases. It can also be observed
that the number of refinements can be very high in certain cases, which is due to
the large number of classes and properties in many ontologies and the absence of
explicit or implicit disjointness between classes. We want to note that when the
operator is used to learn concepts from instances (standard learning task), one
can use the optimisations in Section 3.2 and consider classes without common
instances instead of class disjointness. In this case, the number of refinements
of a given concept will usually be much lower, since no explicit disjointness
axioms are required. In all experiments we also note that the time the reasoner
requires differs a lot (from 1.5% to 68.4%). However, since the number of reasoner
requests is finite and the results are cached, this ratio will decrease with more
calls to the refinement operator. Summing up, the results show that efficient
ideal refinement on large ontologies can be achieved in EL, which in turn is
promising for EL concept learning algorithms.

5 Related Work

In the area of Inductive Logic Programming considerable efforts have been made
to analyse the properties of refinement operators (for a comprehensive treatment,
see e.g. [15]). The investigated operators are usually based on horn clauses. In
general, applying such operators to DL problems is considered not be a good
choice [3]. However, some of the theoretical foundations of refinement operators
in Horn logics also apply to description logics, which is why we want to mention
work in this area here.

5 http://owl.cs.manchester.ac.uk/repository/

In Shapiro’s Model Inference System [17], he describes how refinement op-
erators can be used to adapt a hypothesis to a sequence of examples. In the
following years, refinement operators became widely used. [19] found some gen-
eral properties of refinement operators in quasi-ordered spaces. Nonexistence
conditions for ideal refinement operators relating to infinite ascending and de-
scending refinement chains and covers have been developed. The results have
been used to show the non-existence of ideal refinement operators for clauses
ordered by θ-subsumption. Later, refinement operators have been extended to
theories (clause sets) [8].

Within the last decade, several refinement operators for DLs have been inves-
tigated. The most fundamental work is [12], which shows for many description
languages the maximal sets of properties which can be combined. Among other
things, a non-ideality result for the languages ALC, SHOIN , and SROIQ is
shown. We extend this work by providing an ideality result for EL. Refinement
operators for ALER [3], ALN [7], ALC [13,9] have been created and used in
learning algorithms. It has been stated in [6] and [7] that further research into re-
finement operator properties is required for building the theoretical foundations
of learning in DLs. Finally, [14] provides ideal refinement in AL-log, a hybrid
language merging Datalog and ALC, but naturally a different order than DL
subsumption was used.

6 Conclusions and Future Work

In summary, we have provided an efficient ideal EL refinement operator, thereby
closing a gap in refinement operator research. We have shown that the operator
can be applied to very large ontologies and makes profound use of background
knowledge. In future work, we want to incorporate the refinement operator in
learning algorithms, and investigate whether certain extensions of EL may be
supported by the operator without losing ideality.

References

1. F. Baader, R. Molitor, and S. Tobies. Tractable and decidable fragments of con-
ceptual graphs. In Seventh International Conference on Conceptual Structures
(ICCS’99), number 1640 in LNCS, pages 480–493. Springer Verlag, 1999.

2. F. Baader, B. Sertkaya, and A.-Y. Turhan. Computing the least common subsumer
w.r.t. a background terminology. J. Applied Logic, 5(3):392–420, 2007.

3. Liviu Badea and Shan-Hwei Nienhuys-Cheng. A refinement operator for descrip-
tion logics. In J. Cussens and A. Frisch, editors, Proceedings of the 10th Interna-
tional Conference on Inductive Logic Programming, volume 1866 of Lecture Notes
in Artificial Intelligence, pages 40–59. Springer-Verlag, 2000.

4. Olivier Bodenreider, Barry Smith, Anand Kumar, and Anita Burgun. Investigating
subsumption in SNOMED CT: An exploration into large description logic-based
biomedical terminologies. Artificial Intelligence in Medicine, 39(3):183–195, 2007.

5. Paul Buitelaar, Philipp Cimiano, and Bernardo Magnini, editors. Ontology Learn-
ing from Text: Methods, Evaluation and Applications, volume 123 of Frontiers in
Artificial Intelligence. IOS Press, JUL 2007.

6. Floriana Esposito, Nicola Fanizzi, Luigi Iannone, Ignazio Palmisano, and Giovanni
Semeraro. Knowledge-intensive induction of terminologies from metadata. In Third
International Semantic Web Conference, pages 441–455. Springer, 2004.

7. Nicola Fanizzi, Stefano Ferilli, Luigi Iannone, Ignazio Palmisano, and Giovanni
Semeraro. Downward refinement in the ALN description logic. In HIS, pages
68–73. IEEE Computer Society, 2004.

8. Nicola Fanizzi, Stefano Ferilli, Nicola Di Mauro, and Teresa Maria Altomare Basile.
Spaces of theories with ideal refinement operators. In Georg Gottlob and Toby
Walsh, editors, Proc. of 18th Int. Joint Conf. on Artificial Intelligence, pages 527–
532. Morgan Kaufmann, 2003.

9. Luigi Iannone, Ignazio Palmisano, and Nicola Fanizzi. An algorithm based on
counterfactuals for concept learning in the semantic web. Applied Intelligence,
26(2):139–159, 2007.

10. Ralf Küsters. Non-standard inferences in description logics. Springer-Verlag New
York, Inc., New York, NY, USA, 2001.

11. Jens Lehmann. Hybrid learning of ontology classes. In Machine Learning and
Data Mining in Pattern Recognition, 5th International Conference, volume 4571
of Lecture Notes in Computer Science, pages 883–898. Springer, 2007.

12. Jens Lehmann and Pascal Hitzler. Foundations of refinement operators for de-
scription logics. In Proc. of 17th Int. Conf. on Inductive Logic Programming (ILP
2007), volume 4894 of LNCS, pages 161–174. Springer, 2008. Best Student Paper.

13. Jens Lehmann and Pascal Hitzler. A refinement operator based learning algorithm
for the ALC description logic. In Proc. of 17th Int. Conf. on Inductive Logic
Programming (ILP 2007), volume 4894 of LNCS, pages 147–160. Springer, 2008.
Best Student Paper.

14. Francesca A. Lisi and Donato Malerba. Ideal refinement of descriptions in AL-log.
In Tamás Horváth, editor, Proc. of 13th Int. Conf. on Inductive Logic Programming
(ILP), volume 2835 of Lecture Notes in Computer Science, pages 215–232. Springer,
2003.

15. Shan-Hwei Nienhuys-Cheng and Ronald de Wolf, editors. Foundations of Inductive
Logic Programming. Lecture Notes in Computer Science. Springer, 1997.

16. Prakash Ramanan. Efficient algorithms for minimizing tree pattern queries. In
SIGMOD ’02: Proc. of the 2002 ACM SIGMOD Int. Conf. on Management of
data, pages 299–309. ACM, 2002.

17. E. Y. Shapiro. Inductive inference of theories from facts. In J. L. Lassez and G. D.
Plotkin, editors, Computational Logic: Essays in Honor of Alan Robinson, pages
199–255. The MIT Press, 1991.

18. The Gene Ontology Consortium. Gene ontology: tool for the unification of biology.
Nature Genetics, 25(1):25–29, May 2000.

19. P. R. J. van der Laag and S-H. Nienhuys-Cheng. Existence and nonexistence of
complete refinement operators. In Proc. of 7th Europ. Conf. on Machine Learning,
volume 784 of Lecture Notes in Artificial Intelligence, pages 307–322. Springer-
Verlag, 1994.

